“不对!”
结果乔彩虹刚一说完,另一边的林玉便摇起了头:
“不对,这个问题没这么简单。”
“九个小气球和一个大气球虽然体积也就是v一样,但不代表它们的压强就相同。”
“根据pv=nrt可以很明显看出来,压强一旦不同,储存的气体也会不同。”
乔彩虹脸上立马浮现了一个问号:
“ovo?”
徐云则朝这憨姑娘笑了笑,又看向了右边的林玉,肯定道:
“林玉同志说的没错,这个问题远远比它看起来要复杂很多。”
“那么林玉同志,你能分析出大气球和小气球压强的不同吗?”
林玉思索片刻,拧着眉毛轻轻摇了头:
“直觉和逻辑上告诉我肯定是大气球压强大点儿,但是原理我不知道。”
徐云朝这姑娘投去了一道赞许的目光。
大气球和小气球哪个压强大。
这个问题搁在后世,肯定会有不少人说是大气球。
原因则是气球球膜的收缩力可以看做一个弹黄系统,然后直接做定性分析就行了。
但实际上。
这个问题远远没有这么简单。
诚然。
朴素地看,张力σ应该随气球大小,也就是形变的增加而增加。
可别忘了。
在气球膨胀的同时, 1/r会随气球大小的增加而减小。
所以如果从材料层面分析,必须要建立一个非定性的模型才行。
这涉及到了橡胶的超弹性本构,必须要运用到类似ogden模型之类的广义超弹性模型。
不过后世学过热力学的同学应该都知道。
这个问题除了材料的非定向模型之外,还有一种更容易接受的物理分析方法。
想到这里。
徐云便组织了一番语言,对众人说道:
“小气球和大气球的区别就在于它们的大小,气球膨胀的时候,它的表面便会开始越绷越紧,而且一直有一种想要往回缩的趋势。”
“如果气球里面的气体和气球外面的气体压强一样大,那就没有什么别的力能够平衡这种气球皮的回弹力了。”
“所以气球内部的气体压强其实是比气球外面的要大,或者说是气球皮的这个回弹力把气球内的气体压缩了。”
说到这里。
徐云又让乔彩虹将轮椅推到了一块黑板边上,拿起粉笔画了个图。
示意图的形状很简单,直观点描述就是
比划一个“耶”的手势,然后水平朝左,两根手指的指尖各有一个箭头。
接着徐云在“手指”交汇的地方写了个o,指尖弧线连线的中段写了个a:
“各位请看,这里的点o在气球内部, a代表气球表面一个很小很小的小正方形。”
“因为气球是膨胀的,所以表面不是平的而是有一个弯弯的弧度。”
“而表面张力t呢,就是想要尽力把这个弧度拉平。”
“如此一来,是不是就很明显了?”
见此情形。
不少成员下意识点了点头。
确实。
气球的表面存在弧度,这是小学生都能理解的情况表述。
所以图示上表面张力的方向虽然垂直于半径 r,但并不垂直于球心o到这个小面积中心点 a的连线。
这个时候如果没有其他的力,这个薄膜也就是气球表面自然就无法保持平衡了。
换而言之
必须要有一个存在气球皮两侧的压力差,以此来抵消这个表面张力t在oa这个线上的作用力。