但这话说起来容易,做起来却同样困难重重。
徐云需要的支柱可不是普通的博士或者教授,而是具备院士级能力的超级大佬。
可华夏的院士说多也多,说少也少,更别提生物专业了。
这种情况下,哪能这么轻松的就给你找到一位互相看得上眼的大牛呢?
想到这里。
徐云不由幽幽叹了口气。
所以还是先辛苦一下裘生吧
十五分钟后。
徐云抵达图书馆。
刷卡过了门禁后,他先是打了杯水,找了个无人的角落坐下。
接着从身上掏出了那张刻录有方程的纸片。
时隔多日。
方程上的内容依旧没变:
4d/b2=4((d1d2))2/[2d0]2=(d1d2)/[d0]=(1-η2)1
{qjik}k(z/t)=(jik=s)n(jik=q)(xi)(wj)(rk);(j=0,1,2,3;i=0,1,2,3;k=0,1,2,3)
{qjik}k(z/t)=[ xak(zsnp),xbk(zsnp),,xpk(zsnp),}{dh}k(zsnp)
(1-ηf2)(z3)=[{k(z3)d}/{r}]k(zmn3)=(ji=3)(ηa+ηb+ηc)k(zn3);
(1-η2)(z(n=5)3):(k(z3)120)k/[(1/3)k(8+5+3)]k(z1)1(z(n=5)3);
w(x)=(1-η[xy]2)k(zsnp)/t{0,2}k(zsnp)/t{w(x0)}k(zsnp)/t
le(sx)(z/t)=[(1/c(sp)-1{nxi-1}]-1=n(1-x(p) p-s)-1。
这是一个由正则化组合系数和解析延拓组成的复合方程组,解起来非常的麻烦。
当时徐云做出的唯一判断,便是最后一道方程的解一定是个比值。
不过今天有了足够的时间,他便又发现了一个情况。
只见他在方程的第三行和第五行边画了两根线,又打了个问号。
表情若有所思:
“似乎”
谷邼
“这张纸片的复合方程组,可以分成三个部分计算?”
众所周知。
正则化理论,最早是为解决不适定问题而提出的。
长期以来人们认为,从实际问题归结出的数学问题总是适定的。
早在20世纪初。
hadamard便观察到了一个现象:
在一些很一般的情况下,求解线性方程的问题是不适定的。
即使方程存在唯一解,如果方程的右边发生一个任意小的扰动,都会导致方程的解有一个很大的变化。
在这种情况下。
如果最小化方程两边之差的一个范函,并不能获得方程的一个近似解。
到了20世纪60年代。
tikhonov,ivanov和phillips又发现了最小化误差范函的加正则项。
即正则化的范函,而不是仅仅最小化误差范函,就能得到一个不适定的解题的解序列趋向于正确解。
换而言之。
第一部分的方程组,其实是一个描述渐变区域的序列集合。
甚至可能是
图像?
想到这里。
徐云顿时来了兴趣。
从4d/b2可以判断,这应该是一个涉及到旋转曲面的问题。
第二行的(jik=s)n(jik=q)(xi)(wj)则可以确定曲面与经线成了某个定角。
既然是定角,那么就可以假设定模型λ=( a , b ,π),以及观测序列o =( o1 , o2 ,, ot )。
那么就有a1(i)=πibi(o1), i=1,2,,n
at+1(i)=[j=1nat(i)aji]bi(ot+1), i=1,2,,n
十五分钟后。
看着面前的结果,徐云若有所思:
“极大化的模型参数吗”
随后他思索片刻,继续在纸上写下了一道公式: